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Almlract--A general relationship between the volume fraction and the specific interfacial area for averaged 
dispersed two-phase flows is proposed. This relationship, expressed as a basic set of two scalar evolution 
equations and two vectorial non-uniformity state equations, is an analytical result obtained by a systematic 
approach using the derivatives of some generalized functions and a local volume-averaging technique. The 
proposed set of equations was expressed for measurable macroscopic parameters of the system and has 
the same generality as the averaged transport equations of two-phase flows. By combination of the basic 
set of equations, called the averaged topological equations (ATEs), second-order ATEs for the volume 
fraction were found. The second-order ATEs were expressed both by a Lagrangian formulation and by 
a Eulerian formulation. The importance and physical meaning of the ATEs developed in this study were 
clarified within the framework of the theory of kinematic waves. 
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1. I N T R O D U C T I O N  

The Sauter mean diameter is a very useful geometric parameter. It accounts for the relationship 
between the volume of a polydispersed phase and its interracial area. Expressions for the volume 
fraction "Eo" of a given phase "a"  [a ffi d for the dispersed phase and a = c for the connected 
(or continuous) phase] as a function of the specific interracial area "aod" are commonly used to 
account for the macroscopic geometric structure of the dispersed phase. These expressions are 
commonly used for the modeling and design of fixed-bed chemical reactors and packed separation 
columns. Algebraic functions of the type "Ed =f(a~d)" are frequently proposed. However, when the 
dispersed phases are in motion, it seems natural to think that the relationship between the volume 
fraction of a given dispersed phase (denoted as the volume fraction, for short) and its specific 
interracial area should be dependent on the velocity of such a dispersed phase. The relevant velocity 
to be considered should, in general, be the local-instantaneous interracial velocity "w ~ ", which 
together with the mean curvature, accounts for the distorting and dispersive effects, as well as for 
the distribution of sizes and shapes. Moreover, as the dispersed phase travels through the bulk of 
the connected phase, different states of agglomeration of the particles could be found surrounding 
a given point as the time elapses. In other words, the topological relationship between the volume 
fraction and the specific interracial area for fluid or fluidized dispersed phases should be established 
as a set of evolution equations and non-uniformity state equations, in which the interracial velocity 
and the mean curvature of the interface are relevant parameters. Despite its importance for 
transient modeling and for the study of flow pattern transitions, a general relationship between the 
volume fraction and the specific interfacial area for dispersed two-phase flows has not been found 
in previous studies. 

Geometric---or topological--relationships, known as topological laws (Bout6 1978), are funda- 
mental in two-phase flow modeling because the introduction of the volume fraction and the specific 
interfacial area as additional unknowns in the averaged transport equations contributes to the 
appearance of a problem known as the closure issue (Bout6 1987). In fact, introduction of these 
additional unknowns makes imperative the establishment of additional equations in order to look 
for particular solutions of the governing transport equations. 
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Studies on volume fraction closure equations can be divided in two kinds: algebraic topological 
laws and differential topological laws (Bour6 1987). Algebraic topological laws focus mainly on 
correlations considering operation parameters, such as the superficial velocities of both phases. 
Topological laws of this kind are mostly appropriate for stationary operation and for the system 
as a whole. One of the more widely used studies of this kind is the drift-flux model closure procedure 
(Wallis 1969). Differential topological laws are more recent. The first differential topological law 
is a non-homogeneous one-dimensional first-order wave equation for the volume fraction (Bour6 
1978). Two parameters are involved in such an equation: the volume fraction wave speed and a 
characteristic relaxation time. A first-order differential topological law with the same structure was 
also proposed for the drift flux (Bour6 1987). While this closure is an extension of the classical 
drift-flux procedures, resulting in the obtention of differential closures, its underlying physical sense 
is based on the fact that inertial effects could be represented by topological laws which allow Ed 
to change as a function of time, probably within a second-order PDE (Bour6 1987). In a further 
development of this approach, Bour6 (1988) postulates a differential closure which, combined with 
the one-dimensional continuity equations, leads to a second-order one-dimensional PDE as a 
topological law for Ed. 

On the other hand, the interfacial area closure issue has also been considered by a number of 
researchers. Some semi-empirical correlations fitting experimental results based on photographic 
or chemical techniques have been summarized, with the aim of generating a more structured 
method considering several flow patterns (Ishii et al. 1982; Ishii 1987). Thus, a set of algebraic 
relationships for the interfacial areas as a function of the volume fraction, the Sauter mean diameter 
and the drag radius, for different flow patterns is proposed. The specific interfacial area at the 
local-instantaneous level of description under transient conditions has been formulated as a 
so-called equation of "conservation of interfacial area concentration", postulated by Kataoka 
(1985). Generalized functions are used as a convenient way of representing the phases and 
interfaces. Kataoka's equation is used for the obtention of a more compact expression of the 
local-instantaneous energy transport equation (Kataoka 1985, 1986). Probably because of its 
postulational nature, averaging of this equation has not been performed nor used for the obtention 
of averaged topological laws, since no fundamental advantages over other postulated equations are 
apparent from such an averaging procedure. 

Averaging techniques developed by a number of contributions over the years (Birkhoff 1964; 
Anderson & Jackson 1967; Slattery 1967; Whitaker 1967; Panton 1968; Drew 1971; Slattery 1972; 
Whitaker 1973; Gray 1975; Ishii 1975; Delhaye 1976; Delhaye & Achard 1976; Gray & Lee 1977; 
Hassanizadeh & Gray 1979; Nigmatulin 1979; Gough 1980; Delhaye 1981; Marle 1982; Drew 1983; 
Sofia 1985; Kataoka 1985, 1986; Gray & Hassanizadeh 1989; Ishii 1990; Wallis 1990; Joseph et 

al. 1990; Sofia 1991; Soria & de Lasa 1991) can be extended for the obtention of additional 
geometric relationships for the volume fraction and the specific interfacial area. It is also important 
to remark that, while a method of obtaining topological laws using averaging techniques should 
be more general than one postulating some closure equations, it has not been systematically 
explored to date. Nevertheless, some averaged geometric relationships have been found. Thus, 
substitution of unit functions in the spatial and time-averaging theorems for a local time-averaging 
operator led Ishii (1975) and Delhaye (1981) to the obtention of local time-averaged differential 
relationships between the void fraction and the time-specific interfacial area. Further volume 
averaging of the above-mentioned relationships, as well as their combination, led to a one-dimen- 
sional wave equation for the volume fraction (Bout6 1987). The parameters involved in such an 
equation are the averaged interfacial speed and the normalized averaged projection of the 
interfacial area on the cross section of the pipe. Both parameters are not explicitly present in the 
transport equations and this fact precluded the use of the above-mentioned relationships as 
topological laws, in spite of their exactness in an average sense. 

Thus, at the present state-of-the-art, topological laws for the volume fraction are imposed by 
algebraic or differential postulational approaches. However, the averaging method has been proved 
capable of providing geometric relationships with the same rank of generality as the averaged 
transport equations. Those geometric relationships have not been considered relevant because of 
the appearance of averaged geometric parameters whose connections with the macroscopic 
parameters usually considered by other topological equations remain unexplored. On the other 



ATEs FOR DISPERSED TWO-PHASE FLOWS 945 

hand, the only available topological laws for the specific interfacial area are algebraic correlations 
which involve a few relevant parameters. 

A general relationship between the volume fraction and the specific interfacial area for an 
averaged dispersed two-phase flow system is established in the present study. This relationship is 
expressed as a set of four PDEs, with two first-order PDEs for Ed that relate to the spatial- and 
time-derivatives of the volume fraction with the specific interfacial area, using the propagation 
speed, the propagation unit normal vector and the dimensionless strength of the volume fraction 
waves as relevant geometric parameters. The other two PDEs involve first-order spatial- and 
time-derivatives of aod and second-order spatial derivatives of E d. The propagation speed, the 
propagation unit normal vector and the dimensionless strength of the specific interfacial area 
waves, together with the averaged mean curvature of the interfaces, appear in these equations as 
relevant parameters. The spatial- and time-derivatives of both E d and a~ give rise to a set of new 
averaged topological equations (ATEs), which are an analytical result obtained by a systematic 
approach using generalized functions and a local volume-averaging operator. Since no restrictions 
were set, other than those inherent to the averaging region (Whitaker 1969; Carbonell & Whitaker 
1984; Bachmat & Bear 1987; Celmi0~ 1988), the equations obtained here have the same generality 
as the averaged transport equations for multiphase systems (Sofia 1985, 1991; Soria & de Lasa 1991). 

In the present study two different concepts are associated to the terms of macroscopic geometry 
and averaged geometry, respectively, and they should be clearly distinguished. The term "macro- 
scopic geometry" refers here to the geometric structure of a dispersed flow, based on the volume 
fraction and the specific interracial area functions, without reference to the detailed (local-instan- 
taneous) configurations of the particles that constitute the dispersed system. On the other hand, 
the term "averaged geometry" is a result of averaging local-instantaneous geometric relationships 
of generalized functions. Such generalized functions represent the detailed configurations of the 
particles that constitute the dispersed phase. Moreover, the concept of the phasic structure, as 
distinct from the interfacial structure, is identified and defined in this contribution. In fact, while 
the interracial structure is determined by the specific interfacial area dynamics, the phasic structure 
is determined by the volume fraction dynamics, being both geometric structures interrelated by the 
non-uniformity state ATEs. 

The logic of the whole process followed for the obtention of the ATEs is visualized in figure 1. 
The well-established geometric theory of surfaces embedded in space (e.g. Aris 1962; Fliigge 1972) 
is used for the description of both macroscopic isoconcentration surfaces and interfaces. The 
macroscopic level is studied in section 2. It is assumed that the volume fraction and the specific 
interracial area are well-defined concentration functions. Then, the geometric study of isoconcentra- 
tion surfaces of Ed and acd gives expressions for the spatial- and time-derivatives of both parameters. 
Section 3 is devoted to the derivation of spatial- and time-derivatives of the interface function, as 
well as a review of the derivatives of the phase function. In section 4 averaging of the phase function 
and the interface function is performed. Section 5 is a one-to-one comparison of the averaged 
derivatives with their analogous macroscopic derivatives in section 2. This process is called linkage 
and equations resulting from that comparison are called linking equations. In section 6 application 
of the linking equations gives a final set of averaged spatial- and time-derivatives of the volume 
fraction and the specific interracial area (the basic set of ATEs). The parameters involved in such 
equations are measurable geometric parameters with a clear physical meaning. Combinations of 
the basic set of ATEs give Eulerian and Lagrangian second-order ATEs. Section 7 is a discussion 
of the physical meaning of the ATEs as well as of their role and importance in the solution of 
several issues concerning two-phase flow behavior. 

1.1. Notation conventions 

The following notation conventions 
otherwise: 

are maintained throughout the work unless specified 

1. Two repeated indices, one a superscript and the other a subscript, imply a 
summation upon such indices. For example: wknk means Xk Wknk • 

2. Indices i, j and k, refer to the three-dimensional generalized coordinate system. 
Summations on these indices go from 1 to 3. 
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Postulation of 
field functions 
Sd (x,t), acd (x,t) 

Fundamentals and hypotheses 

Geometry of moving I 

i 

surfaces in space I 

Superimposed Continua Hypothesis 
Isoconcentration surfaces of 

I volume fraction: ~d =k 
~ t e r f a c i a l  area: acd =..~K 

Theory of 
generalized 

functions 

1. Macroscopic geometry of 
dispersed two-phase flows 

Spatial and time-derivatives of 
volume fraction and 

specific interfacial area 

Continuum Hypothesis 
Dividing surfaces: f(x,t) = 0 

Def. of: phase function Xa(x,t) 
interface function ~cd (x,t) 

JL 
II . . . .  

2. Local-Instantaneous 
geometry of phases and 

Interfaces 
Spatial and time-distributional 

derivatives of the phase function 
and the interface function 

3. Averaged geometry of 
dispersed two-phase flows 
Averaged spatial and time- 

derivatives of the phase function 
and the interface function 

1V 
4. Linkage 

Between macroscopic geometry and averaged geometry 
of dispersed two-phase flows 

5. Averaged Topological Equations (ATEa) 

Figure I. Flow diagram for obtaining the ATEs, 

3. Greek indices refer to two-dimensional intrinsic surface coordinate systems. 
Summations on these indices go from 1 to 2. 

4. Subscript "a" refers to either the connected (a = c) or the dispersed (a = d) phase. 
Subscript "cd"  refers to the interface between the connected and dispersed phases. 
No summation convention for subscript " a "  is allowed. 

5. Bold-face characters denote vectors. 
6. The symbol "V" (the nabla operator) can represent the following differential 

operators: V = gradient, V ' =  divergence and V2= Laplacian. 

The Gibbs' (bold-face) vectorial notation is preferred for final results. Nevertheless, the use of 
a generalized coordinate reference frame enhances the presentation of some demonstrations in the 
initial sections of this study. 
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2. THE MACROSCOPIC GEOMETRY OF DISPERSED FLOWS 

A two-phase dispersed flow resembles some aspects of the behavior of single-phase flows. Thus, 
at a macroscopic level, both phases might be considered as components or constituents of a 
homogeneous mixture. Extension of the classical theory of mixtures (Bowen 1976), based on the 
Superimposed Continua Hypothesis, to these heterogeneous mixtures has provided some models 
[reviewed by Bedford & Drumheller (1983)]. In these models the presence of the dispersed phase 
is considered by the introduction of a concentration function, the volume fraction of the dispersed 
phase Ea (x, t). Extension of this concept to the interfaces facilitates the understanding of the specific 
interfacial area as a concentration function a,a(x, t). Both functions are, at the same time, the most 
relevant geometric parameters of the dispersed system at the macroscopic level. Study of the 
behavior of such parameters should allow the establishment of the geometric structure of the 
two-phase flow at the macroscopic level of description. 

Conservation or balance principles such as those governing the mass, momentum and energy 
transports in the system are not available for the transport of geometric quantities, such as the 
volume fraction or the specific interracial area. Therefore, a geometric study of these functions, as 
proposed here, is a better alternative than the one considering conservation or balance postulates 
on the volume fraction and/or on the specific interfacial area (Kataoka 1985), since such postulates 
could not be subject to general application. 

2.1. The geometry of  isoconcentration surfaces 

Consider a three-dimensional Euclidean space provided with a generalized coordinate system x / 
( j  = 1, 2, 3) and metrics such that ds ~ = g~/dxidx j, where g~/are the covariant components of the 
metric tensor. The geometric description of any sufficiently smooth surface embedded in a volume 
(Aris 1962; Fliigge 1972) can be applied, in particular, to isoconcentration surfaces of  volume fraction 
and isoconcentration surfaces of  specific interfacial area, which can be defined by 

Ed(X I, X 2, X 3, t) = k [la] 

and 

acd(x l, x ~, x 3, t) = K, [lb] 

respectively, where k and K are constants. A point on these isoconcentration surfaces can also be 
given by the parametric equations 

x ~ = z~(U ~, U 2, t; k) [2a] 

and 

xi = ui(V j, V 2, t; K) [2b] 

for the volume fraction and the specific interfacial area, respectively. U ~ and V ~ (0t = 1, 2) are 
independent parameters on the surfaces, that can be taken as intrinsic surface coordinates for the 
volume fraction isoconcentration surfaces and the specific interfacial area isoconcentration 
surfaces, respectively. 

From [la, b] and [2a, b] the complete geometric structure of the volume fraction and the specific 
interfacial area can be developed. The most relevant parameters of the volume fraction geometry 
are summarized below: 

• A unit tangential mixed tensor T~ can be found by deriving [2a] with respect to U ~ (Aris 1962): 

T~ = 0U ~" [31 

• The covariant derivative is represented by a subscript prime (Aris 1962). In terms of such a 
derivative, the unit normal vector to the surface is found by means of the surface covariant 
derivative of [la] (Truesdell & Toupin 1960; Thomas 1961): 

E~,~ = E~ T~ = 0, [4] 

UMF 18/6--K 
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where Ed, j is orthogonal to T{. Then it results that the covariant unit normal vector "¢j" can 
be defined by 

6d'j ej= [51 

• The mean curvature Hv of the volume fraction isoconcentration surfaces is related to the 
contravariant unit normal vector ¢i by 

d]!i = -2Hv.  [6] 

• The velocity of a fixed point on the surface is called the propagation wave velocity and is defined 
from [2a], the parametric equations of the surface, as 

C~ = \ at ,Iv" [71 

• The normal component of the propagation wave velocity is called the propagation speed Cv: 

Cv = ¢,C'~. [8] 

The product C~ ~k is known as the propagation normal wave velocity. Similar geometric 
parameters for the specific interfacial area are reported in table 1. Since both Ed and a~d do 
not change on the isoconcentration surfaces, the time-derivatives of Ed and aod can be expressed 
by the following equations: 

&___dd = __ C~ ekEek [9] 
tgt 

and 

~acd = 
dt -- Csvka~d.k • [10] 

In [9] and [10], as well as in the whole study, the fact that the partial time-derivatives are 
taken at constant x is denoted simply by the derivation symbol ~/dt, dropping, for notational 
simplicity, the symbol ( )x. It can be seen that "Cv¢ k'', used in [9], is the propagation normal 
velocity of volume fraction waves. Moreover, the propagation normal velocity of specific 
interfacial area waves "C,v k'', as given by [T6], appears in [10]. Equations [9] and [10], together 
with [5] and [T2] will be used later in order to provide a linkage between the macroscopic and 
averaged description of dispersed flows. 

The fact that the geometric structure of the specific interfacial area (the interfacial structure) and 
the geometric structure of the volume fraction (the phasic structure) are mutually independent, has 
been discussed by Sofia (1991). Such independence can also be assessed by considering, for instance, 

Table I. Macroscopic geometric parameters of the specific interracial area isoconcentra- 
tion surfaces 

cf. Equation 
Parameter name equation Definition No. 

~o j 
Unit  tangential mixed tensor [3] P{ = ~ V  q [TI] 

Unit  normal vector [5] Vk = - -  a~d'-"-"Lk [T2] 
IVao~l 

Mean curvature [6] H~ = i i -~v.i IT3] 

c, =(ooq Propagation wave velocity [7] ' k at Jv  ["1"4] 

Propagation speed [8] C, = vj C{ [T5] 

Propagation normal wave velocity C,v k [T6] 
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a "flow I" of small spherical bubbles in a liquid on one side and a "flow II" of big spherical bubbles 
in a liquid on the other side. Consider, in particular, that the flow rates are adjusted in order to 
get same volume fraction of gas EG in both flows: EGli = coin. In this situation the specific interfacial 
area aoL is bigger for flow I than for flow II: aGLll > aGLlii- Furthermore, consider that additional 
processes of deformation, coalescence and breakage modify EG and aGE in many different ways. 
Therefore, aca and Ed are assumed to be, in general, geometrically independent of each other. This 
assumption of geometric independence is extended to the specific interfacial length, ~d, defined in 
section 5 by [40]. The geometric independence assumption preserves the generality of the present 
approach, since the geometric parameters Ed, aoa and ~d, which determine the macroscopic 
configurations of the particles, are assumed free to change independently of each other. Therefore, 
the set of all possible macroscopic geometric configurations can be represented by appropriate sets 
of topological equations. 

However, it should be clear that the governing transport equations are also needed for a general 
description of two-phase flows, since the ATEs are only a mathematical description of the 
geometric configurations and evolutions of the dispersed system. 

3. THE LOCAL-INSTANTANEOUS GEOMETRY OF MOVING INTERFACES 

In the present study an interface is defined as a thin film located between the connected phase 
and the dispersed phase. While the Continuum Hypothesis can be applied to each one of these 
phases, the thermodynamic properties and the mechanistic behavior of the material in the interface 
may be specified or not, according to the relevance of the interfacial processes to the global 
behavior of the system (Soria 1985). An interface can be described by considering it as a dividing 
surface, which is closely related to the actual three-dimensional geometric interfacial configuration 
(Gibbs 1928). 

Under such an assumption, a dividing surface is a two-dimensional region S(t) embedded in a 
three-dimensional Euclidean space. In the present study, this Euclidean space is supposed to be 
expressed in terms of a generalized coordinate system x j, coincident with the macroscopic 
coordinate system used in the foregoing section. It is possible to express the equation of a point 
in the dividing surface by the implicit form 

f ( x  l, x 2, x 3, t) = O. [11] 

Equation [11] implies that the function f (x ,  t) does not change on the dividing surfaces. 
Therefore f (x ,  t), the dividing surface equation, can be considered as belonging to a general kind 
of isoconcentration functions whose properties were studied previously by Sofia (1991). A point 
on the dividing surface S(t) can also be given by the parametric equations 

x~=xi(ul,  u2, t), i = 1 , 2 , 3 ,  [12] 

where u ~ (0t = 1, 2) are independent parameters on the dividing surface, taken as intrinsic surface 
coordinates. From [11] and [12] a set of geometric parameters for the dividing surfaces can be 
established, as shown in table 2, following a similar mathematical procedure to that used for the 
study of volume fraction and specific interfacial area isoconcentration surfaces. A degree of 
freedom should be noticed in [11], as compared with [la, b], since the values of the functionf(x, t) 
surrounding the dividing surfaces have not been specified. This fact affects the definition of the unit 
normal vector nj, given by [T8], and allows the possibility of establishing the existence of two unit 
normal vectors on the surface, each of them pointing to the other one in the opposite direction. 
The unit normal vector pointing towards the outside of the phase "a"  is denoted by the symbol 
"n~j", then 

ncj = - ndj. [13] 

Further equations considering unit normal vectors are expressed with reference to a particular 
phase "a"  as naj. Important orthogonality relationships involving derivatives of the unit normal 
vector naj are given by Truesdell & Toupin (1960), Estrada & Kanwal (1980) and Sofia & de Lasa 
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Table 2. Geometric parameters of the dividing surfaces 
cf. Equation 

Parameter name equation Definition No. 

~x j 
Unit tangential mixed tensor [3] t~ = Ou t [T7] 

fk 
Unit normal vector [5] nk = - I ~  IT8] 

l ,  [T9] Mean curvature [6] h a = -~na, i 

Velocity of displacement [71 w j = (OxJ] IT10] 
\ O t J .  

Speed of  d i sp lacement  [8] w a = n , w  j IT11] 

N o r m a l  veloci ty  of  d i sp lacement  w.n~ [T12] 

(1991). Moreover, the interfacial velocity can be split into its normal and tangential components 
(Truesdell & Toupin 1960): 

wi= t~w ~ + wan i. [14] 

Finally, a relationship between the constant x and constant u partial time-derivatives for a 
general objective field ~O defined on the surface can be expressed, according to Sofia & de Lasa 
(1991), by 

- ~  = --~ . -- w'O,, - w~n~O,k. [15] 

Equation [15] establishes that the time-derivative following the motion of a fixed point on the 
surface, corrected by the convective motion of the surface, is equal to the time-derivative at a fixed 
point in the volume reference frame. 

3.1. Definition of  the phase distribution function 

The phase distribution function Xa(x, t) is defined for the phase " a "  (a = c, d) by 

t) = {~ otherwiseif phase "a". is present at point x and time t xa(x, 

The function X~ satisfies the relationship 

[16] 

X c + X d =  1. [17] 

3.2. Covariant distributional derivatives and the interface function 

The distributional derivatives of the phase distribution function are normal to the interface 
(Estrada & Kanwal 1980). This fact can be shown for the first covariant derivative of Xa adopting 
the approach of Thomas (1961) once more, as was done for the establishment of [5]. The 
computation of the rate of change of Xa on the surface, following the coordinate u ", gives 

X~,s = ti, X~,r, [18] 

where the bar above the index of the covariant derivative makes clear the distributional character 
of such a derivative, extending the notation introduced by Estrada & Kanwal (1980). By the 
definition of X~, [16], it can be noticed that X~,~ = 0 and since Xa is a constant outside the surface 
and t i is tangent to it, X~,r is normal to the dividing surface. Then, 

X~,r= - n ~ 6 ~ ,  [19] 

where the interface distribution function 6~ is defined by 

6cd = -nJaXa ' ]  • [20] 



ATEs FOR DISPERSED TWO-PHASE FLOWS 951 

This is a Dirac-delta generalized function with support in the set of dividing surfaces (the 
interfaces) between the connected and dispersed phases. The fact thal~ died does not depend on the 
choice of the phase "a"  selected in [20] can be shown by covariant derivation of [17] and 
substitution, together with [13], into [20], for both the connected and dispersed phases. 

Furthermore, the covariant derivative of the 6¢d function is also important for the present 
development. Covariantly deriving [20], it is shown (Soria 1991) that 6~d'r is normal to the dividing 
surface in such a way that 

6~d,r = --n~i6'o, [21] 

where 

6'~ = --nkd~,~ [22a] 

= giJX~,~-- 2h~6od [22b] 

is the normal derivative of the interface function (Estrada & Kanwal 1980; Sofia 1991; Sofia & de 
Lasa 1991). In [21] and [22a, b] the subscript "a",  in the normal derivative, refers to the choice 
of the unit normal vector used in the definition of 6'~. It can also be shown, by using [13] and 
[22a] for (a = c, d), that 6~ = - ~  :~. While [20] and [22a, b] are definitions of the interface function 
6~d and the normal derivative of the interface function 6.', respectively, [19] is a fundamental 
relationship between the generalized functions X~ and 6~d- Moreover, [19] might also be considered 
as a formal definition of the unit normal vector n~,., such a definition would be consistent with [18] 
and [13]. Furthermore, both [19] and [21] are symbolic expressions for the local-instantaneous 
non-uniformity states of the dispersed system at a given time. While [19] gives a relationship 
between the gradient of the phasic volumes and while [19] gives a relationship between the gradient 
of the phasic volumes and the presence of the interfaces, [21] gives a relationship between the 
Laplacian of the phasic volumes, the gradient of the interfacial areas and the mean curvature of 
the interfaces. 

3.3. Time distributional derivatives 

The partial time-derivatives for Xa, keeping x and u constant, are related by [15], considering 
it in the sense of distributional derivatives. The derivatives on the dividing surfaces vanish because 
Xa does not change on the surfaces. The following equation, obtained by Gray & Lee (1977) is then 
also found: 

~X~ , _ 
= -- w~naX~,r- wQ6~. [23] 

at 

On the other hand, the time-derivative of 6¢d is obtained 
[19]: 

~ d  ~ k an~ _ 
at = ~ ( -n ,X~.~)  = n~k-~ 6~d 

from its definition in [20], together with 

kf xo  --n~--~, , [24] 

where the commutative law for the partial derivatives of the generalized functions has been used 
in the last term (Estrada & Kanwal 1980). Furthermore, the first term on the RHS of [24] is zero 
because of an orthogonality property for the unit normal vector and its derivatives, as reported 
by Soria (1991). The second term in this relationship can be substituted using [23] and IT9] in order 
to obtain 

~6cd = _nk  (wafod),r [25a] 
at 

= -- (wan kf~d),r -- 2hQ W, hod- [25b] 

Equation [25b] has been proposed by Kataoka (1985) as a local-instantaneous "conservation of 
interfacial area concentration". Kataoka's equation is based on the postulation of a balance for 
the interracial area. The resulting form of the "generation rate of specific interfacial area per unit 
interfacial area, Fs" that satisfies the postulated equation is then found using some geometric 
relationships. While balance principles are only available for mass, momentum and energy 
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transports (Truesdell & Toupin 1960), a transport phenomena approach for geometric quantities, 
such as the phasic volumes or the interfacial areas, should require the use of balance postulates, 
which cannot be considered as general as the present derivation of [25a, b]. The present 
development, based only on general geometric relationships for generalized functions, provides the 
only available derivation of Kataoka's equation and also gives a simple form of the "Fs" term, 
which is equivalent to the factor ( -  2ha wa) in the second term of [25b]. It is also interesting to point 
out that the generation rate of interfacial area can be accounted for by a surface metric tensor which 
is time-dependent. Then, the time-derivative of the determinant of the surface metric tensor is equal 
to the square of the factor (-2howa) mentioned above (Moeckel 1975). 

4. THE AVERAGED GEOMETRY OF DISPERSED FLOWS 

4.1. Local volume-averaging operator 

Averaging of the covariant and time distributional derivatives of the phase distribution function, 
[16], and the interface distribution function, [20], is necessary in order to obtain averaged equations 
of such derivatives at the macroscopic level. A definition of an averaging operator is required for 
obtaining these expressions. In order to clarify the procedure, a local volume-averaging operator 
is selected in this study, since the geometric meaning of the averaged equations becomes more 
apparent when using the volume-averaging technique. However, other averaging operators, 
different from those considered in this study, may have some advantages for a number of 
applications (Arnold et al. 1990; Joseph et al. 1990). It is also convenient to point out that the use 
of different averaging operators provides averaged expressions which, under a set of equivalent 
assumptions, are formally similar to each other. The meaning of the averaged quantities is what 
makes the main difference between the choice of averaging operators (Nigmatulin 1979; Bedford 
& Drumheller 1983). 

In the present study the volume-averaging is defined as 

1 f ~ . d V ,  (.>(x, t) = 

V(x) 

where the averaging volume V is such that 

[261 

V =  I [ I d V = c o n s t  
d d d  
V(x) 

[27] 

and V(x) c R 3 is fixed region inside the system, whose centroid is located at point x. 
There are important conditions for the proper application of the averaging method. The analysis 

of such conditions has been considered by Whitaker (1969), Carbonell & Whitaker (1984), Bachmat 
& Bear (1987) and Celmiq~ (1988), among others. 

4.2. Intrinsic averaging operators and averaged variables 

Weighted averaging operators are also important for the present approach, thus the intrinsic 
interfaciai area average for a variable ~ is, after Ishii (1975): 

(~k)~(x, t) = (6~b___~). [28] 

and the intrinsic interfacial length average is defined by 

<a~#> 
(~0 >* (x, t) = - -  [29] <~'.> 

It is assumed that the averaging volume is such that the intrinsic interfacial area average satisfies 
the property 

<~o(<~h >¢d + U)>cd = (~O >¢d<O )~ + <~O >oa(# >¢d + <Sfi>¢d, [301 
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for q), ff and # variables defined on the surface. The variables with a .- in [30] are the fluctuations 
around the averaged values, according to the equation 

=~ - <@>~. [311 

It can be shown that <ff>~ = 0 by averaging [31] and using [30] for particular values of tp and 
# (q) = 1 and # = 0). This result, extended in general to arbitrary functions @, q) and #, allows us 
also to conclude that 

<~/~ >m = <~o/~ >~ = <~# >~. [32] 

4.3. Averaging o f  distributional derivatives 

Since the averaging region V(x) is fixed and its volume is constant, the derivative operators can 
be interchanged with the averaging operators if the derivatives are defined over the complete region 
V(x). This requirement is satisfied by the distributional derivatives in the two-phase system. Thus, 
the averaging of Eqs. [23], [25a, b], [19] and [21] gives, respectively: 

• averaged distributional time-derivatives, 

0 <X,____>> _ <w. >~ <6~ > [33] 
Ot 

and 

"v~----------L" + { <won~ >~ <a,~ >},k = - 2<h. w. >~ <6~ >; [34] 
Ot 

and 

• averaged distributional covariant derivatives, 

<Xo >'k = - <n~ >~ <6~ > [35] 

and 

<6~ >'k = - <no, >* <6', >, [36] 

where, from [22a, b], 

<6"~ > = <g°Xa.,7> -- 2<ha >~ <t$~ >. [37] 

Equations [33]-[37] can be considered as the more general geometric relationships between <X, > 
and <6,~ > within an averaging approach for dispersed two-phase flows. Higher-order derivatives 
of the interface function should give further PDEs as geometric relationships involving the 
derivatives of other geometric parameters, such as the averaged normal derivative of the interface 
function 6". While [33] and [35] are already known, [34], [36] and [37] are new contributions to 
the theory of dispersed two-phase flows by averaging methods. In fact, [33] together with a 
one-dimensional version of [35], using a composite volume-time-averaging procedure, was 
presented by Bout6 (1987). Limiting forms of the Gauss theorem and Leibniz rule, as derived by 
Delhaye (1981), can be applied to unit scalar and vectorial functions, giving equations closely 
related to the projection of [35] onto the axial coordinate of a pipe, and with [33], respectively. A 
one-dimensional combination of [33] and the referred projection of [35] onto the axial coordinate 
allows the expression for a topological equation presented by Bour6 (1987). 

5. LINKAGE BETWEEN THE MACROSCOPIC AND AVERAGED GEOMETRIES 

A volume-averaging operator should be selected in such a way that the measurable macroscopic 
geometric parameters are equivalent to the averaged distribution functions. Thus, the averaged 
phase function should be equal to the volume fraction, as was established by Joseph et al. (1990) 
and frequently taken as a definition of the volume fraction of the dispersed phase or the void 
fraction (e.g. Drew 1971, 1983; Whitaker 1973; Ishii 1975; Gray 1975; Delhaye & Achard 1976; 
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Gray & Lee 1977; Delhaye 1981; Soria 1985; Soria & de Lasa 1991): 

<Xa > = ca. [38] 

Also the averaged interface function should be equal to the specific interfacial area "a~" (cf. Ishii 
1975; Delhaye 1976; Drew 1983; Kataoka 1986; Gray & Hassanizadeh 1989; Sofia & de Lasa 1991): 

(6~)  = a~. [39] 

Furthermore, the averaged normal derivative of the interface function should be equivalent to 
the specific interfacial length "Ta", defined here by 

<(~ a > : '~a" [40] 

The averaged covariant and time-derivatives of Xd and rod, given by [33]-[36], can be compared 
one-to-one with the correlative macroscopic covariant and time-derivatives of the functions Q and 
a~, given by [9], [10], [5] and [T2]. From the comparisons of [5] with [35] and [T2] with [36], 
considering the fundamental linking equations [38]-[40], it results, respectively, that 

(n~ >~ = 5 ~  [41] 

and 

<n~ >* = Nvk, [421 

where the scalar 5, the dimensionless strength of  the volume fraction waves, is defined by 

= I Vedl [43] 
acd  

and the scalar N, the dimensionless strength of  the specific interfacial area waves, is defined by 

I Va~l 
N - [441 

7d 

Moreover, [41] and [42] can be substituted into [35] and [36], respectively, for the dispersed phase 
and the correlative scalar products in the normal directions can be taken in order to obtain 

ekQ,k = -- 5acd [45] 

and 

vkacd, k = -- N?d. [46] 

Then, [45] and [46] can be further substituted into [9] and [10], respectively. The resulting 
equations are 

dQ 
0--t- = 5Cv aed [47] 

and 

~acd 
Ot = NC, ?d. [48] 

Comparison of [47] with [33], considering [38] and [39], gives the linkage between the averaged 
speed of displacement of the interface and the propagation speed of the volume fraction waves: 

<Wd >¢d = -=Cv. [49] 

On the other hand, the linkage of [48] with the averaged time-derivative of the interface function, 
[34], requires an additional development. Relationships for the averaged and the local values of 
both the contravariant metric tensor g~J and the contravariant unit vector q~ are relevant for that 
purpose and are elaborated on in the next section. 
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5. I. Averaging the averaged geometric structure of dispersed media 

Averaging of the normal vector ~; deserves careful attention. Consider an arbitrary point x in 
the system and a point y in the vicinity of x. It is assumed that the unit normal vector ~ily can 
be expanded into a Taylor series around point x: 

¢ '1 ,  = ¢il x + (y J -  xJ)~,~l x + -~ (yJ -  x J ) ( y  k - xk)~,~ I ~ + ' - . .  [501 

Truncation of this series to the first term gives 

~ily = ~i[ x + o'{ly- x l l 2 n ,  I }, [51] 

where the approximation order is related to both the distance between the points and the mean 
curvature of the volume fraction waves. Averaging of [51] with the centroid at point x gives 

(¢')(x, t) = ~i(x, t )+ (oi{V1/31Hvl}). [521 

Equation [52] can be simplified if the approximation order term is negligible. Under such an 
assumption 

( ¢ i )  ~ ~i for V t/3 ~ I1/Hvl. [53] 

The condition of validity for application of [53] is satisfied without restriction for the averaging 
volume size, by plane volume fraction waves because Hv = 0 for plane waves. If the volume fraction 
waves are not planar a careful adjustment of the averaging volume must be made in order to apply 
[53]. This condition, however, is equivalent to one of the conditions to be satisfied by any averaging 
volume, say that the averaging volume should be much smaller than the size of the flow structure 
to be investigated (Celmio[ 1988). 

Averaging the modulus of the unit normal vector ¢; and considering [53] allows one to conclude, 
after several steps (Soria 1991), that 

(hid)~d = (g~ndk )~ = g i k ~ ¢ k  = ~ i  [54] 

and also that 

<giJXa,Vj ) = g'J<X, >.,j = gOEa.,j. [55] 

5.2. Linking equations for the time-derivative of the specific interfacial area 

The covariant derivative of the second term in [34] gives, after substitution of [39]: 

Oa~d 
d-----t- + (wdnk )¢da~d'k + (Wd nk )¢d'kacd = -- 2(hd Wd )~da~d. [56] 

Moreover, substitution of [36], [42] and [48] gives, after rearrangement of the terms, the following 
relationship: 

N(Cs - (Wdn~)ed~'k)7 d q- ( ( W d n ~ ) c d , k  "[" 2(hdWd)~d)a~d = 0. [57] 

Because of the assumption of geometric independence, [57] is valid for arbitrary values of both 
~a and a~d. This fact implies that both the coefficient of ~d and the coefficient of acd are equal to 
zero. These equalities constitute the linkage between the macroscopic and averaged time-derivatives 
for acd. The first restriction established by the coefficient of ~d is satisfied trivially when there are 
no interfacial area waves (N = 0). Otherwise, the propagation speed of specific interracial area 
waves should satisfy the relationship 

G = (wdn~)~V~, [58] 

which implies the fact that the propagation normal velocity of specific interfacial area waves, given 
by [T6], is related to the averaged normal velocity of displacement of the interface by 

(Wd nk )cd ---- Cs vk. [59] 

Whatever the two-phase system satisfying [58] or (N = 0), the second restriction, coming from 
the coefficient of acd equated to zero in [57], can be expressed as 

(wdnkd)cd'k + 2(hdWd )cd = 0. [60] 
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Equations [59] and [60] are useful expressions that, together with [38]-[42] and [49], constitute 
a link between the averaged and macroscopic geometric descriptions of dispersed two-phase flows. 

6. AVERAGED TOPOLOGICAL EQUATIONS (ATEs) 

6.1. A basic set of A TEs 

Once the geometric structure of the two-phase system is determined and the link between the 
macroscopic and averaged descriptions established, the evolution equations [33] and [34], as well 
as the non-uniformity state equations [35] and [36], can be transformed into useful equivalent 
forms. Direct application of the set of linking relations, given by [38]-[42], [49], [59] and [60], into 
the set of averaged equations [33]-[37], gives the following basic set of  averaged topological 
equations: 

OE____dd = ~.Cva~, [61] 
Ot 

data 
O---{ + C~v .Va~ = O, 

and 

VEd= - - ~ a ~  

[62] 

[63] 

Va~ = - Nv (WEd -- 2(ha )~ a~). [64] 

The use of Gibbs' (bold-face) vectorial notation is preferred in this section for these equations, 
which can be considered as one of the most important results of the present study. While [61] and 
[62] are scalar evolution equations for the volume fraction and the specific interfacial area, [63] and 
[64] are vectorial expressions for the gradients of both geometric parameters and account for the 
non-uniformity states of the dispersed medium. The topological equations for the volume fraction 
are first-order PDEs and depend algebraically on the specific interfacial area. On the other hand, 
the topological equations for the specific interfacial area are also first-order PDEs with respect to 
a~. However, [64] depends on the Laplacian of the volume fraction. Combinations of the basic 
set of ATEs [61]-[64] can give further equivalent sets of first- or second-order ATEs. 

On the other hand, an alternative to [62] can be developed from [34] using the properties of 
averaging of products. Considering [30] and [32], together with [41] and [49], it can be shown that 

(wdnkd)cd = ~2CvCk + ( l~dnd  k )cd [65] 

and also that 

(hd Wd )~d = 5Cv (hd)~d + (~d Wd )~d" [66] 

Substitution of [65] and [66] into [34] gives an ATE that includes one vectorial covariance 
(ffdn,~)~d and one scalar covariance (/~dWd)~d: 

Oa~ + (~2CvCkaed), k + ((ffdnka>cdacd),k = --2(~Cv (hd)~d + (l~dW d )cd)acd. [67] Ot 

The only parameters involved in [67] are those of the volume fraction geometry. This fact 
encourages further developments based on [67], in spite of the presence of the above-mentioned 
covariances. 

6.2. Second-order ATEs for Ea 

Second-order topological equations for Ed can be obtained by derivation of [61] and [63] and by 
further application of such derivatives into [62] or alternatively into [67]. A procedure based on 
[62] (Soria 1991) gives the following second-order ATE: 

0 ({~ 2Ed IFl ~ OEd \ - ~  - WEa,] + --~ + C, ¢" VQ = 0, [68] 
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where 

and 

/1 = - - , C v  C~ [69] 
¢.v 

[ d 1- '  0 = - ~ ln(NCv) [70] 

C, = OH(~ .V In ~" - 2H,). [71] 

Equation [68] represents a second-order wave with a relaxation time O. This equation, expressed 
in partial time-derivatives, will be referred as the Eulerian form of the second-order ATEs. The 
notation for parameters involved in [68] was taken from Bour6 (1988). 

Second-order ATEs based on [67] can also be developed. Some of these equations should contain 
parameters only from the volume fraction geometry. However, the inclusion of the covafiances 
seems to be unavoidable. A second-order topological equation has been developed by Sofia (1991), 
from the set [61], [63] and [67], together with the use of the geometric properties of the volume 
fraction function. The resulting equation is 

O N \ t~t J V2ed + ~ + t~, ¢" Ved = 0, [721 

where the introduction of a convected or substantial derivative operator, defined by 

D---t = dt + (ffdnd)~" V, [73] 

was adopted. The parameters used in [72] were called O, h and t~,, according to the notation 
introduced by Bour6 (1988). However, the physical meaning of the parameters involved in [72], as 
given by [74]-[76], is different from the physical meaning of similar parameters in Bourr's void--drift 
closure equation. This difference is result of the different approaches followed in the respective 
derivations: while in Bourr's work it is assumed that t~, is the propagation speed of volume fraction 
waves (see [8]), evaluated in the basic state of the lineafization method followed, in the present 
derivation of [72] t~, is a more sophisticated function given subsequently by [76]. The derivation 
of [72], as given by Sofia (1991), is an analytical result of the geometric study, which does not 
involve specific assumptions on the set of parameters involved. These parameters result from the 
lumping of groups of primary macroscopic parameters, and are defined by 

~q = ( z c , )  2, 

and 

[74] 

[75] 

C, = O/I({ .V In 3 - 2Hv). [76] 

Equation [72] is a Lagrangian form of the second-order ATEs. Equation [72] apparently does 
not involve parameters for the specific interfacial area geometry. In fact this is not true, since 
considering [65] and [59], the substantial derivative ~)/Dt, given by [73], can also be written as 

i5 
O-tt = Ot + (C,v - ~2Cv~).V. [77] 

Thus, the propagation normal velocity of the specific interfacial area has also been introduced 
in this Lagrangian second-order ATE. While [77] clarifies the meaning of the velocity covariance, 
it should be stressed that the use of [72], as compared with the Eulerian formulation, may be 
advantageous only if the velocity covariance can be represented by a closure in which the geometric 
parameters of the specific interfacial area geometry are avoided. Thus, further explorations on 
closures of the velocity covariance, considering only the volume fraction geometric parameters, 
would be desirable since no experimental studies on the propagation velocity of specific interfacial 
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area waves seem to be available. However, research on the geometric structure of the specific 
interfacial area is crucial for the application of the ATEs in highly distorting dispersed flows, such 
as that occurring at some flow pattern transitions and at the entrance of pipes and columns; 
especially for applications in distributed parameter models. 

7. DISCUSSION 

While one purpose of this paper is the systematic development of a second-order wave hierarchy 
of ATEs, the general procedure developed here is also capable of giving systems of ATEs of an 
arbitrary order, since the Dirac-delta distribution function is infinitely differentiable (Estrada & 
Kanwal 1980). However, third-order ATEs involve parameters related to the macroscopic 
geometric structure of the specific interfacial length "Ya" and higher-order ATEs involve macro- 
scopic geometric parameters associated with the geometric structure of other higher-order specific 

j t interfacial parameters, such as the specific interfacial point n~ = ( 6 ~ ) =  (--na~a,i). The present 
lack of experimental techniques to measure such parameters diminishes the practical interest in the 
ATEs of order greater than 2. Nevertheless, the theoretical importance of the higher-order 
topological equations remains unaffected, since a wide variety of high complex kinematical wave 
behaviors in dispersed systems can be, at least in principle, accurately modeled and explained by 
appropriate sets of ATEs. 

7.1. The theory of  kinematic waves and the A TEs 

The ATEs developed in the present study constitute a novel approach within the theory of 
kinematic waves (Lighthill & Whitham 1955; Zuber 1964; Wallis 1969; Whitham 1974; Bour6 1988). 
Most theoretical studies on kinematic waves begin with the proposition of mass and momentum 
balances for two-fluid, two-phase flows. Then, rearrangement of the continuity and momentum 
equations, together with some considerations on the interfacial mass and momentum transfer 
terms, gives rise to ad hoc kinematic wave equations, under a set of simplifying assumptions (i.e. 
Foscolo & Gibilaro 1987; Biesheuvel & Gorissen 1990; Dankworth et al. 1990; Lahey 1991). 

The present study does not follow the above approach, since no mass or momentum balances 
have been employed so far. The set of ATEs given by [61]-[64] is valid for any kind of dispersed 
two-phase flow system under no additional restrictions other than those required by the averaging 
approach. It can be proposed that the ATEs, together with the transport equations, constitute a 
general averaged formulation for dispersed two-phase flows. The evolution equations and the 
non-uniformity state equations for Ed and am, given by [61]-[64] are independent of the continuity 
and momentum equations. Therefore, the wave hierarchy for Ed is increased in two orders of 
derivation with respect to the classical approach of considering the transport equations as the only 
source of the evolution description. This fact can have significant consequences on the modeling 
of dispersed two-phase flows. Thus, stability studies on one-dimensional gas-liquid bubbling flows 
(i.e. Lyczkowski et al. 1982; Jones & Prosperetti 1985; Prosperetti & Jones 1987) should include 
two additional evolution equations considering one-dimensional combinations of the ATEs 
[61]-[64] in set of relevant averaged equations. The ATEs [61]-[64] provide geometric constraints 
for the set of transport equations in the same way as the continuity equations can be seen as mass 
constraints for the momentum balances. Thus, the solutions of the ATEs constitute the set of 
geometrically meaningful functions which are candidates to be solutions of the averaged model 
under particular conditions. It should also be noticed that the ATEs are coupled with the transport 
equations and therefore the simultaneous solution of the enlarged set of ATEs and the averaged 
transport equations is a requirement to obtain results with added confidence. 

The inclusion of the ATESs into the modeling of fluidized beds may also modify the results of 
some stability analyses made on the basis of the continuity and momentum equations. For instance, 
an equation for the fluctuations of Ed around its steady state values was reported by Foscolo & 
Gibilaro (1987). Such an expression, developed from the continuity and momentum equations, is 
a second-order PDE with the same terms as the Eulerian description given by [68]. While Foscolo 
& Gibilaro's "particle bed model" is capable of reasonably predicting the transition between 
particulate and aggregative fluidization, it makes use of some simplifying assumptions and 
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empirical correlations as well. The meaning of their propagation speeds is not the same as the 
geometric meaning of the parameters C, and H 1/2 in [71] and [69]. However, the influence of the 
elastic modulus of the particulate medium on the parameters/1 and ~ should be the subject of 
further research. Moreover, it should be clarified that the assumptions used by Foscolo & Gibilaro 
(1987), in order to obtain the particle bed model, might be considered grosso modo as equivalent 
to certain similarity conditions on the mass and momentum balances that simulate the pure 
geometric behavior of the dispersed medium to a second-order wave hierarchy, represented 
accurately by the ATEs. Furthermore, it should be stressed that within the averaging approaches, 
the condition I nvl ,~ R -1 for one-dimensional pipe flow should always be satisfied (Soria 1991); 
R is the pipe radius. This condition is strictly satisfied by fiat volume fraction isoconcentration 
surfaces, for which Hv = 0. In fluidized beds this condition is satisfied in the particulate fluidization 
regime, in which homogeneous contractions or expansions are driven by small changes in the flow 
rate. However, in the aggregative fluidization regime, each one of the bubbles (assumed spherical 
with diameter "db" for simplicity in this analysis) can be interpreted geometrically as a volume 
fraction wave with mean curvature H~ = 2/db. On the other hand, the appearance of gas or liquid 
bubbles inside the fluidized bed also satisfies the inequality db < 2R and therefore it can be 
concluded that 

I n~l -- 2rib' > R-1, [78] 

which clearly violates the condition given above for the appropriate application of the averaging 
technique in one-dimensional models. 

On the basis of this analysis, it cannot be assured that the ATE [68] can predict the transition 
between the particulate and aggregative fluidization regimes. This conclusion is consistent with a 
comment by Joseph (1990) regarding the particle bed model, based on one-dimensional equations 
(Foscolo & Gibilaro 1987). What can only be hypothesized at this stage is that the instability 
conditions for [68] may be one of its validity limits, if [68] remains meaningful up to that point. 
However, it is quite possible that [68] is valid up to the instability conditions because of the observed 
appearance of horizontal non-homogeneities, the so-called "parvoids", in particulate liquid 
fluidized beds (Hasset 1961; Gibilaro et al. 1986). In fact, such parvoids can be considered as 
bubbles with almost zero mean curvature. 

The behavior of dispersed gas-liquid flows is even more complex because of the growth, 
distortion, coalescence and break-up processes in the dispersed phase. Significant contributions on 
the behavior of bubbling flows and on the bubble-slug flow pattern transition have been made by 
Bour6 and co-workers (Mercadier 1981; Micaelli 1982; Bour6 & Mercadier 1982; Tournaire 1987; 
Matuszkiewicz et al. 1987; Bour6 1988, 1989; Saiz-Jabardo & Bour6 1989), both in the experimental 
and theoretical areas. While Bourr's theoretical contribution has been referred to in the 
introduction of the present study, some important experimental findings of the mentioned 
researchers are referred to in the following: 

• There exist two kinematic propagation modes (called modes 3 and 4) with 
propagation speeds (?3 and C4. 

• At low void fractions (Ea < 0.20) only mode 3 exists and it is always damped 
(bubble flow pattern). 

• At intermediate void fractions (0.25 < Ed < 0.30) modes 3 and 4 coexist and are 
damped. 

• At large void fractions (0.30 < Ed ~< 0.41) mode 3 is still present and is damped, at 
least upstream in the test section. Mode 4 is amplified when periodic small 
perturbations on the gas flow rate are induced at a certain range of wavelengths 
which do not exceed a few Hz. 

• C3 is, except for data at ed = 0.047, smaller than the average gas velocity but greater 
than the average liquid velocity and even greater than the velocity of the mixture 
at the center of the volume. 

• When only mode 3 is present, the amplitude decay, expressed as the ratio of the 
amplitude measured at a given level divided by the amplitude measured at the 
upstream adjacent measuring level, follows an exponential law. 
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• C4 is in the same order of magnitude as the slug velocity and greater than the 
average gas velocity. At large void fractions, slugs can be observed in the upper 
part of the test section. 

• Mode 4 is amplified as the wavelength of the perturbations grows bigger. The mode 
4 amplitude exhibits a clear dependence upon Ed. 

The phenomena associated with the existence of the above-mentioned two kinematic modes, 
considering the propagation speeds, amplification and damping, can be qualitatively represented 
by a one-dimensional second-order ATE developed from [68] or, alternatively from the ATE [72]. 
In fact, a differential closure approach proposed by Bour6 (1988) leads to an equation mathemat- 
ically similar to a one-dimensional version of the Lagrangian ATE [72], even though the physical 
meaning of Bour~'s parameters are different from those of the parameters 6 ,  H and t~, in [72], as 
referred to above in the discussion of [72]. Bour6's approach is an extension of the void--drift closure 
techniques used in the drift-flux models (Wallis 1969). His second-order PDE for Eo results from 
the combination of the continuity equations for both phases, under incompressibility and the 
absence of interfacial mass transfer restrictions, and the postulation of the most general first-order 
quasilinear differential closure equation for the void fraction and the drift flux. As a postulated 
expression, the differential void-drift closure lacks generality. It also needs to specify five functions. 
The present demonstration of Bour6's equation remedies these drawbacks since its generality has 
been established from first principles of geometry only, under some equivalence conditions between 
the macroscopic and the averaged descriptions, given by the linking equations [38]-[42], [49], [59] 
and [60]. Nevertheless, three independent functions (selected from ~, N, Cv, Cs and (ha)cd) have 
to be known, in order to be able to proceed with computations using the ATE [72]. It has also 
to be pointed out that, when applying the one-dimensional ATEs to the bubble-slug transition, 
some limitations exist. The bubbles grow bigger inside the pipe when approaching the bubble-slug 
transition and their number diminishes in a given region, up to the point that the flow cannot be 
correctly referred to as "dispersed" two-phase flow, but as "intermittent" two-phase flow. In such 
circumstances, a requirement on the minimum number of bubbles inside the averaging region might 
not be fulfilled (Celmio~ 1988). Once more in this case, as in the stability studies of fluidized beds, 
the instability conditions impose a validity limit for the application of the volume-averaged 
one-dimensional ATEs, if these ATEs remain meaningful up to this limiting condition. The use 
of different averaging operators (Ishii 1975; Delhaye & Achard 1976; Drew 1983; Arnold et al. 
1990) may be a remedy for this problem, illustrating a posteriori the generality of the geometric 
approach developed in this contribution. In fact, other averaging operators should not modify 
substantially the procedure and the set of ATEs, but only the meaning of the averaged parameters 
involved in the relevant ATEs (Nigmatulin 1979; Bedford & Drumheller 1983). 

8. CONCLUSIONS 

1. A set of ATEs, not previously found in the published literature, resulted from the development 
of a novel approach in order to establish general relationships between the geometric parameters 
of a dispersed two-phase flow both at the local-instantaneous level ([23], [25], [19] and [21]) and 
at the macroscopic level ([9], [10], [5] and [T2]). A volume-averaging technique and a link 
between both the macroscopic and averaged descriptions ([38]-[42], [49], [59] and [60]) gave rise 
to the ATEs presented in this study. 

2. The averaged geometric structure of a general dispersed two-phase flow was represented by a 
basic set of ATEs, constituting an evolution equation for the volume fraction Ed, [61], an 
evolution equation for the specific interfacial area acd, [62], and two non-uniformity state 
equations, one for Ed, [63], and the other for a~, [64]. 

3. The ATEs have the same generality as the averaged transport equations for dispersed two-phase 
flows, since the validity of the ATEs is only limited by the constraints that appear in the 
development of general averaged transport equations for multiphase systems. The constraints 
establish limitations on the size of the averaging volume (the applicability restriction in [53] and 
the validity condition for application of [30]). 
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4. Since the ATEs are independent of the averaged transport equations for dispersed two-phase 
flows, the use of the evolution ATEs [61] and [62], combined with the non-uniformity state ATEs 
[63] and [64], increases the wave hierarchy in two orders on the derivatives of Ed, with respect 
to the wave hierarchies used previously in the averaging approaches of dispersed two-phase 
flows. 

5. A Eulerian second-order ATE, [68], and a Lagrangian second-order ATE, [72], for ea were 
obtained by combination of the basic set of ATEs. 

6. For an homogeneous fluidized bed as well as for a bubbling pipe or column, the instability 
conditions for the second-order ATEs [68] and [72], in their one-dimensional forms, may 
represent one of their validity limits, unless [68] and [72] are not meaningful up to that point, 
due to the failure of the averaging region in the fulfillment of the restrictions on its volume size. 
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